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The need to extend XQuery to support updates has
been recognized both in the research and the stan-
dards community. Several language proposals and
prototype implementations have been put forward,
and update language requirements are being defined
within the W3C. Most proposals center around the
use of update primitives applied to XQuery expres-
sions, along with a variant of the FLWR loop con-
struct binding variables within a block of basic up-
date statements. In defining a precise semantics for
such statements a number of issues arise: one must
decide how conflicts among updates are to be re-
solved, and how query evaluation interacts with up-
date application. In this work we provide a frame-
work for defining alternative semantics for updates,
and identify within this space what is (thus far) the
consensus choice: that semantics involves a two-
stage execution process, in which query evaluation
is performed first, after which a generated sequence
of concrete updates is applied in a fixed order deter-
mined by query output. This results in a clean de-
terministic semantics which facilitates analysis. A
drawback is that the evaluation of the language can
be inefficient. One would prefer to perform updates
eagerly before further evaluation, or to re-order the
update operations. We focus on an optimization of
the “standard semantics”, in which updates are per-
formed as soon as they are generated. We present
a static analysis for determining when this optimiza-
tion can be exploited. Experiments on the implemen-
tation of this analysis, implemented on top of Galax,
show that the overhead is minimal.

1 Introduction
Specification and processing of bulk updates is a critical data
management task for XML documents. While updates to
XML have long been implementable in node-at-a-time fash-
ion within navigational interfaces such as DOM [Dom98],
languages for specifying bulk updates are emerging. Sev-
eral language proposals based on extensions of XQuery have
been put forward [WS02, WS00, SIGMOD01, PlanX04], and
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the World Wide Web consortium is well underway to extend
XQuery [XQuery04] with the capability of expressing updates
over XML data. Two sample declarative update programs, in
the syntax of [PlanX04] are shown below:
U1:update

for $i in //openauction
insert $i/initial/text() into $i/current
delete $i/bidder[@increase=3000]

U2:update
for $i in /site//item
insert <incategory/> into $i
replace $i//mail/to/text()

with $i//mail/from/text()

These examples are both built upon an instance document
conforming to the XMark [VLDB02] DTD. A document sat-
isfying this DTD is shown in Figure 4.

Informally, example U1 states that after the update each�
	���
 ������������
 element should have the value of ����������
�� equal
to the value of ��
���������� , and that after the update each  ��!�!"���
element having an increase of three thousand and lying below
a �
	���
 ������������
 element should be deleted. The effect of this
program over an instance, is shown in Figure 1(a) and (b).

Previous update language proposals differ in many details,
but they agree on a critical semantic issue regarding how
program evaluation is to be ordered. These proposals gen-
erally center upon the generation-order, snapshot semantics
[PlanX04], which specifies the use of two logical phases of
processing: in the first all evaluation of XPath and XQuery
expressions is done, yielding an ordered set of point updates.
In the second phase the sequence of updates is applied in the
specified order. In example U1 above, a sequence consist-
ing of alternating inserts and deletes will be generated, based
on the document order of the results of $i,$i/initial/text(),
$i/bidder, and this sequence will be applied in that order to
the document.

This semantics has a number of attractive features; it is
more consistent with the semantics of declarative relational
update languages such as SQL, and it averts the possibility of
ill-formed reads arising at runtime. We shall see further that
the use of the semantics allows one to do reasoning on pro-
grams that is impossible in a more iterative semantics. The
main drawback of the semantics is that the naive implementa-
tion of it is very inefficient. In a straightforward implemen-
tation the intermediate results must all be materialized be-
fore any writes are performed, rather than a more pipelined
chaining of reads to subsequent writes. Secondly, the stan-
dard semantics requires application of the updates in the or-
dering generated by the queries, while other orders may result



in more locality of access and more efficient renumbering of
indices.

We consider several optimizations to the standard evalua-
tion. The first optimization revolves around changing the eval-
uation order in which concrete updates are applied, and instead
doing generated deletes before inserts. This optimization is
not necessarily sound, and we state some results from [TR05]
concerning the feasibility of checking soundness. The second
optimization involves relaxing the requirement that evaluation
is done before application of updates, and doing instead an ea-
ger evaluation. The eager evaluation is also not sound for all
updates. We review the technique of [CAV05] for determin-
ing soundness of eager evaluation, which involves checking
for “conflicts” between evaluation and update. We have im-
plemented this soundness check on top of the Galax update
engine, and we present experiments to show that our analysis
can detect optimization opportunities that arise in many com-
mon updates. Since bulk updates are often defined well in
advance of their use, and can be used to specify computing-
intensive modifications to data that may take minutes or even
hours on current update processors, the use of offline analy-
sis is particularly attractive. In example U1, our analysis de-
tects that both order-optimization and eager-optimization are
applicable, while in U2 it detects that the eager-optimization
is applicable.
Organization. Section 2 presents the update language stud-
ied in this paper, a variant of the language of [PlanX04], and
then presents the semantics in three steps: primitive updates,
single-step update reduction, and evaluation order. Section 3
gives optimizations based on re-ordering and eager optimiza-
tion, and then overviews the static analysis that checks their
soundness. Section 4 describes the implementation of our
static analysis and runtime engine and presents experimental
results both on the static analyses and the impact of optimiza-
tion. Section 5 gives conclusions and ongoing research, while
also reviewing related work.

2 XML and XML Update Languages

In this section, we briefly review the syntax of the XML update
language we study in the paper and discuss its semantics.

2.1 Update Language for XML

We review here the syntax of the XML update
language UpdateX we use throughout the paper, based
on [PlanX04]. The top-level update-specific constructs we
deal with are presented in Table 1.

ComplexUpdate ::= FLWUpdate � ConditionalUpdate

FLWUpdate ::= “UPDATE” (ForClause � LetClause)+ WhereC
lause? SimpleUpdate+

ConditionalUpdate ::= “UPDATE” “IF (” XQueryExpr “) THEN”
SimpleUpdate “ELSE” SimpleUpdate

Table 1: Update statements syntax

where XQueryExpr, ForClause, LetClause and Where-
Clause refer to productions[40, 43, 45, 46] drawn from
the XQuery syntax specification [XQuery04], while the non-
terminal SimpleUpdate is defined in Table 2.

SimpleUpdate ::= ( “ �������	��
 ” cExpr
(“ ��
�
��	� ” � “ ����
������ ”) tExpr ) �

( “ ����������
 ” cExpr (“ �	��������
 ” �
“ �	��� ����
 ” )? “ ����
�� ” tExpr ) �

( “ ����� ��
�� ” tExpr ) �
( “ ���� �� �	!"� ” tExpr “ #$� 
&% ” cExpr )

Table 2: Simple updates

In the table, tExpr is an XPath expression, while cExpr is
an XQuery expression. Intuitively, tExpr computes the target
location where the update is taking place, while cExpr con-
structs a new document fragment which is to be inserted or
replaced at the target of the update.
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Figure 1: An example XML document, before (a) and after (b)
the update U1.

2.2 Semantics of XML Updates

We reformulate the semantics of updates as proposed in
[PlanX04, SIGMOD01] both to establish notation and to high-
light some details that were not emphasized in earlier work.
We need this formalization both in order to rigorously describe
the existing semantics, and as a basis for exploring optimiza-
tions and alternatives.

The semantics of all existing update proposals
[SIGMOD01, WS02, PlanX04, ICDE01] consists first
of a description of how individual updates apply, and sec-
ondly of how query evaluation is used to generate an ordered
sequence of individual updates. Following this pattern, we
will first introduce our concrete update operations, and then
discuss the order in which they are generated. This second
discussion will itself consist of two components, one defining
single transition steps on complex updates, and the second
defining the evaluation strategy in which steps are executed.
Concrete update API. Concrete updates correspond at a more
abstract level to the data model update primitives presented
in [PlanX04] and mirrored in the Galax data model update API
interface. Let ' be an XML document, ( be a forest (ordered



sequence of XML documents), and 
 a node identifier, then a
concrete update � , applied to the XML document ' , is one of
the following operations.

� ��� InsAft
� 
�� (�� or ��� InsBef

� 
�� (�� : the operation
returns a new document, such that, if 
	� ' , each tree in
( is inserted immediately after (before) the node with id
 in its parent node, in the same order as in the forest ( .

� �
� InsInto
� 
�� (�� : the operation returns a new document

such that, if 
�� ' , the trees in ( are inserted after the
last child of the node given by 
 .

� ��� Del
� 
 � : if 

� ' , the operation returns a new doc-

ument obtained from ' by removing the sub-document
rooted in the node associated with 
 .

� ��� Replace
� 
�� (�� : the operation returns a new docu-

ment '�� , such that, if 
�� ' , the trees in ( replace the
sub-document rooted in the node of 
 (in the ordering
given by ( ).

To complete the semantic definition above, we need to ad-
dress what to do if 
��� ' in each case. Previous proposals
differ on this issue (or leave it unspecified). One possibility,
which we call the lenient API has each of the operations be
the identity in this case. A second possibility, which we call
the strict API, aborts the update in this case. We can consider
this to mean that a particular value “abort” is returned; when
our UpdateX programs generate an API call that returns this
value, they will be required to return abort as well. The Galax
0.3.5 implementation chooses this strict option, while 0.4.0
and 0.5.0 use the lenient API. Of course, there are a range
of possibilities in between. One plausible middle ground is
the API in which ����� ����� operations with non-referring nodeIds
have no effect, but insert or replace operations on such nodeIds
abort. We refer to this as the standard API (for lack of a better
term – it is certainly not a standard) and we will use it as the
default here.

Each concrete update implicitly entails several operations
that keep the consistency of the output document. For exam-
ple, since node insertions and replacements are performed un-
der the assumption that the sets of nodeIds in the inserted and
replace documents are disjoint – if this is not the case an as-
signment of fresh nodeIds to nodes must be performed.
Single-step processing of update statements. Generating a
sequence of concrete updates from either a simple or complex
update program defined in Table 1 is built upon transitions
that evaluate expressions to produce a sequence of concrete
updates. We now define these transitions.

Our single-step transitions transform the state of the pro-
gram during processing . We can characterize this state by
means of a pair consisting of the current document and a se-
quence of partially-evaluated updates still to be processed. An
expression binding for an update � is a mapping associating a
set of tuples to occurrences of XPath expressions in � . A tuple
will be either a nodeId in the original document or an XML
tree constructed from the original document (e.g. a copy of
the subdocument below a node).

A bound update is a pair
�  � � � where � is a non-terminal

UpdateStatement and  is an expression binding for � .
We are now ready to define the update reduction operator��� �

, which takes a bound update and produces either a sequence

of bound updates and concrete updates, or aborts. We refer to
such a sequence as above as a pending update sequence.

� � 	 � for a bound update 	
� �  � � � is defined as follows. If� is a FLWUpdate of the form  "!$#$% �"�'&�(*) ��+ (that is,  "!$#
% ����&�(,) is the initial loop in the outermost ForClause),
we form

� 	 � by evaluating ) to get nodes 
 �.-�-�- 
0/ , and
returning the sequence whose ��132 element is

�  54 � �6+ � ,
where  74 extends  by assigning % ��� to 
 4 . There is a cor-
responding reduction step for evaluating the 8:9;��#<� and
� ��� clauses, as well as the conditional expressions, which
we omit for brevity.

� If � is a block of SimpleUpdates � � -�-=- �?> , then
� 	 � returns�  � � � � -=-�- �  � �?> � .

� If � is a single simple update and some expressions in �
do not yet have bindings,

� 	 � is formed by first evaluating
the XQuery expressions in � (in case of #<��@A� B,C7� or &�(ED ��#F� )
to get a forest, and evaluating the target expressions in� to get one or more target node identifiers. We then
proceed as follows:

– for an &�(;D ��#F� or #<��@A� B,C7� if the target expression eval-
uates to at most one node, then

� 	 � is
�  +G� � � , where

 + extends  by binding the remaining variables ac-
cording to the evaluation just performed. What hap-
pens when the target expression evaluates to multi-
ple nodes is also a question of strictness. Following
[PlanX04], we say that the result of

� 	 � is abort in
this case. If the lenient API is used, it would be
more natural to have the reduction operator return
the empty sequence in this case.

– For a ����� �7��� , let nodeIds 
 �H-�-=- 
 > be the result
of evaluation of the target expression.

� 	 � is�  � � � � -�-=- �  � � � � , where  4 extends  by assigning
the target expression of the delete to 
 4 .

� Finally, if 	I� �  � � � is a bound update in which � is
simple and every expression is already bound, then

� 	 � is
simply the concrete update formed by replacing the ex-
pressions in � with the corresponding nodeId or forest
given by the bindings.

Note that the update reduction operator is concerned only
with reducing a single update statement to a sequence of sim-
pler ones; it does not actually apply any updates.
Processing order for complex updates. We are now ready
to define the semantics of programs, using two kinds of transi-
tions acting on a program state, which consists of either a doc-
ument and a pending update sequence, or the keyword abort
(for the standard or strict API).

An evaluation step on a program state
� ' � us � 	 � -=-�- 	 � �

is a transition to
� ' � us + � where the new sequence us + is formed

by picking a pair 	J� �  � � � and replacing 	 by
� 	 � in the

sequence. If ps is the program state before such an evaluation
step and ps + is the result of the step, we write ps KMLN ps + .

For example, the processing of the update � =
for $x in A/B insert $x/C into /B on document '
at program state 	?OEPQ� ' � � 	RPQ� �GS � � ��� would proceed as
follows.

We start with transition 	6O P K�LN�T 	6O � , with program state	?O � being:



�
, �������	��

����������� , insert $x/C into /B);�����	��

����������� , insert $x/C into /B) �

where the nodeids
� � � � � � � are the result of evaluating ��� � .

For ease of readability, in the remainder we substitute for each
occurrence of a variable ! " the nodeids

� � � � � � � and similarly
for path expressions rooted in variables. We would then have
the transition:	?O � K�LN$# 	?O � with program state 	6O � equal to:�

, ��� � =(insert % � into %�& );� � =(insert ��� /C into /B) �
where ' � is the result of � � and ' � is the result of evaluating

!�"(�*) with !�" � � � .
The next transition to fire is 	?O � K LN�+ 	6O � where 	6O � is:�

, ��� � =(insert % � into %�& );� � =(insert % � into % & ) �
An application step simply consumes a concrete update �

and replaces the document ' by the result of applying � to ' .
If ps + is the result of an application step applying p to program
state ps under the standard API, we write ps K-,N ps + . Under
the standard or strict API we also specify that if � aborts then
the application step returns abort as well.

In the above example we have:
�/. &10324 # ��5�6 �*�7� � =(insert % � into % & ) �
where ' + is the result of applying the concrete update

(insert % � into %�& ) to ' .
The processing of the update � would conclude with the

application step:
K8,N�+ ' + +G� S
where ' + + is the result of applying the concrete update

(insert %9� into %�& ) to ' + .
An evaluation sequence is any sequence of steps K L and

K8, as above, leading from the initial document and update
statement to some document with empty pending update se-
quence. The final document ' + + is the output of the sequence.

In general, different evaluation sequences may produce dis-
tinct outputs. This is where we need the final component of
the semantics: a strategy for deciding which steps to execute.
As mentioned in the introduction, all existing proposals use a
semantics which restricts to evaluation sequences such that:

(i) (snapshot rule) all available evaluation transitions K L
must be applied before any application step K , is per-
formed,

(ii) (generation order rule) the application steps K , must
then be applied in exactly the order given in the pending
update sequence - that is, we always perform K ,N starting
at the initial concrete update in the sequence.

It is easy to see that this results in a unique output for each
update. We say

� ' �;: � K ' + if
� ' � �A� S �;: ���;� rewrites to� ' + � S � via a sequence of K�L and K8, transitions, using the

standard API subject to the two conditions above. Under this
semantics, the processing of program U1 is given in Figure 2.

3 Optimizations

For the rest of this paper we consider the semantics using the
standard API and the snapshot and generation-order rules as
the “official semantics”. Naturally, an implementation of this
semantics will differ from the conceptual version above: e.g.
multiple evaluation or concrete update steps can be folded into

<>=@? N TBADCFE =@G �IH�JKMLN T
<

,
? N # =(insert 4 # /initial/text() into 4 # /current);N + =(delete 4 # /bidder[@increase=3000]);N9O =(insert 4 + /initial/text() into 4 + /current);N�P =(delete 4 + /bidder[@increase=3000])

JK LN #
<

,
? N # =(insert 1 # into Q # );N + =(delete 4 # /bidder[@increase=3000]);N9O =(insert 4 + /initial/text() into 4 + /current);N P =(delete 4 + /bidder[@increase=3000])

JK LN + <R=�S�SIS K LN O <R=ISIS�S K LN P
<

,
? N�# =(insert 1 # into Q # );N9+ =(delete T # );N O =(insert 1 + into Q + );N P =(delete T + )

JKMUN #
< # ,

? N�+ =(delete T # );N9O =(insert 1 + into Q + );N P =(delete T + )
JKMUN +

< + ,
? N O =(insert 1 + into Q + );N�P =(delete T + )

JKMUN O < O =�SIS�S K LN P
< P = E

Figure 2: The snapshot evaluation for the update U1; we ab-
breviate the nodeId corresponding to � � /initial/text()
( � � /initial/text()) with � � ( � � ) and similarly for � � , � � ,
 � and  � .
one, and cursors over intermediate tables containing query re-
sults will be used, rather than explicit construction of the pend-
ing update sequence. However, even a sophisticated imple-
mentation may be inefficient if it respects (i) and (ii) above.

3.1 Re-ordering Optimizations

We first consider relaxing the generation order rule (ii) by in-
dexing concrete updates in an order other than generation or-
der, and then using this index to choose which application step
K ,N to apply. In Example U1, we may wish to index � � � �7��� s
before &�(;D ��#F� s, and thus apply the ����� �7��� operations KV,N + and
KW,N�P first. That is, we change rule (ii) so that we apply KV,
for the first concrete ����� �7��� in the pending update sequence,
and then apply other operations in generation order. We call
this the delete-first rule. An “early delete” strategy can reduce
space usage, in addition to decreasing the number of times
indices must be re-numbered, for example when an indexing
scheme based on document order is required. Note that under
every possible semantics considered here, we cannot switch
the ordering among concrete insert operations which have the
same target, unless the two inserted trees are isomorphic.

To perform the “early delete” optimization, we have to
know that it is sound. Whether or not this is always the case
depends on the issue of strictness. It is easy to verify that if
the lenient API is used, the order-based optimization above
is always sound. If some operations abort, then the alternative
orderings above may produce different results. Under the stan-
dard or strict API, different results can occur depending on the
order, because a sequence of concrete updates produced con-
tains two updates whose targets are in an ancestor/descendant
relationship.

If we know at specification time that for program : , the



delete-first evaluation can always be used, then we can sim-
ply index ����� �7��� operations as they are generated separately
from other operations and then evaluate using the delete-first
strategy. We say that an update : is Order Independent (OI)
if delete-first gives the same output as generation-order for
any document. In [TR05], we show that for updates based
on navigational XPath and navigational XQuery (we call these
navigational updates), OI is decidable. The decision proce-
dure makes use of a simple reduction to satisfiability of a
small subset of XPath 2.0, along with a satisfiability test for
this subset. This can be used as an approximate test for the
full UpdateX language, by using an abstraction taking an ar-
bitrary update to a navigational one.

3.2 Eager Optimization

We now turn to optimizations weakening the snapshot rule
rather than the generation-order rule. The snapshot rule (i)
forces the evaluation of all embedded expressions to occur
prior to update application, which can be inefficient for a num-
ber of reasons. In particular, it may be more efficient to ap-
ply ����� ����� operations as soon as they are generated, since this
will reduce space consumption and can dramatically reduce
the processing time in further evaluations.

The eager optimization of an update � is the evaluation
formed by dropping rule (i) and replacing it with the require-
ment (i’) perform either an application step or an evaluation
step on the first element of the pending update sequence. It
is easy to see that i’) also guarantees that there is at most one
outcome of every evaluation. We denote the corresponding
rewriting relation by KML�,��7L � .

The eager optimization is not necessarily sound, regardless
of the API. A simple example of an update for which it is not
valid is:�����

update�
	���
���� ������	���������������� 	���� � 	��
$ ! � �"����	���������������� 	����� ��#����$�%
���� ���&	'
 !

A simple argument shows that U3 behaves differently un-
der eager optimization than under the snapshot semantics. Un-
der eager optimization, the initial evaluation step will produce
a sequence of identical copies of the inner loop. After this,
the first copy of the loop will be evaluated and its generated
updates applied, then the second copy, and so forth. One can
see that this process can increase the size of the document ex-
ponentially. In contrast, under the standard semantics U3 can
produce only a polynomial increase.

We turn to the problem of statically verifying that the ea-
ger optimization is sound. We say that an update � is Binding
Independent (BI) if any evaluation sequence for � satisfying
requirement (ii) produces the same output modulo an isomor-
phism that preserves any nodeIds from the original document
' . Note that if ( � and ( � are strongly isomorphic, then no
user query can distinguish between them.

Unfortunately, one cannot hope to decide whether an ar-
bitrary update in UpdateX is BI, even for updates based on
navigational XPath and XQuery. That is, the problem of de-
ciding whether the eager optimization is sound is undecid-
able, even for navigational updates [CAV05]. Despite this,
[CAV05] gives an algorithm giving a conservative test check-
ing whether an update is Binding Independent, a test that can
be relativized to check independence relative to documents
that satisfy a given schema or DTD. We sketch the key idea

of this algorithm below.
Intuitively, an update is BI if performing concrete updates

that are generated from a program does not impact the eval-
uation of other XPath expressions. For the example U1, we
can see that in order to verify BI it suffices to check that: i) for
each �AP in //openauction, the update ($i:a P , &�(;D � # � $i/initial/text&�( ��! $i/current) does not change the value of the expression
$i/initial/text, $i/current, or $i/bidder, where in these expres-
sions $i can be bound to any other � � in //openauction, ii) for
each a P in //openauction, ($i:a P , ����� ����� $i/bidder) does not
effect $i/bidder, $i/initial/text, or $i/current for any $i �� � P .
The above suffices to show BI, since it implies that perform-
ing any evaluation step after an update gives the same result
as performing the evaluation before the update.This observa-
tion is the basis for the key notion of a non-interfering update
program: one for which any generated concrete update can-
not effect the output of any query involved in evaluation of
the updates. Any update program that is non-interfering is BI,
and furthermore the number of transition steps used to evalu-
ate such a program under the eager semantics will be no more
than the number of transitions to evaluate it under the standard
semantics.

[CAV05] gives an algorithm to test whether an update op-
eration can interfere with an XPath query (where both the op-
eration and the query can have parameters), and this in turn
gives a conservative test for Binding Independence. As with
the OI decision procedure, this algorithm relies upon a reduc-
tion to the satisfiability problem for XPath expressions. From
a program we generate several non-interference checks, that
assert that an update does not affect the value of an XPath ex-
pression; from each assertion we generate a set of XPath 2.0
expressions whose unsatisfiability will confirm the assertion.
Finally, for each of these XPath expressions, we run a satis-
fiability test to determine that they are all unsatisfiable. This
algorithm for non-interference checking may be of interest in
its own right, for use static analyses related to XML concur-
rency control.

4 Static Analysis Implementation and Experi-
ments

In order to investigate the feasibility of these optimizations, we
have implemented the soundness test for eager optimization.
In addition, we have implemented both the eager and order-
based optimization on top of Galax as an adjunct external Java
module. The result of the static analysis for eager optimization
is a boolean flag passed together with the update program. If
the flag states that the update is BI the eager evaluation is used.

The general picture of the static analysis and its compo-
nents is shown in Figure 3. At verification time, a program
is parsed and then goes through the conservative analysis for
soundness, which includes the generation of non-interference
tests, which in turn generate calls to our XPath satisfiability
test. If all non-interference tests return positive, then the pro-
gram is verified to be BI. If some test is negative, than nothing
can be concluded about the program. At runtime, the program
is processed by our modification of the Galax-based UpdateX
engine.

The verification algorithms are implemented completely
in Java, while the runtime, like the rest of Galax engine, is
in OCAML. The runtime optimizations are currently imple-
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Figure 3: Architecture of Static Analysis-time and Run-time in Galax.

mented only on Galax 0.3.5, by modifying the module im-
plementing FLWUpdates. It is more challenging to integrate
eager optimization into Galax 0.4.0 and higher, where updates
are fully integrated with querying. At the moment, our analy-
sis is a “global one” that decides the choice of the entire eval-
uation strategy for the update; it is not clear how this can be
used within a general algebraic optimization framework.

We ran experiments on a testbed of sample updates, built
upon XMark [VLDB02] DTD, whose snippet is illustrated in
Figure 4. To measure the static analysis time, we chose a col-
lection of

	�

sample updates, divided into delete-intensive up-

dates, insert-intensive updates, to indicate whether the gener-
ated deletes will outnumber inserts or viceversa. These up-
dates exhibit various numbers of nested ( ��� clauses, ranging
one to three. The program text for each example appears in
the Appendix.

U Update Descr. Operations AT ResG # U with 1for 1del 700 BIG + U with 2for 1ins,1del 600 BIG O U with 1for 1ins,1del 610 BIG P U with 2for 1ins,1del 450 BIG
�
U with 2for 1del 420 BIG
�
U with 3for 1ins,1rep 9030 BIG��
U with 2for 1ins 380 BIG
�
U with 2for 1ins,1del 550 NotBIG
�
U with 2for 1ins 360 BIG #3T U with 2for 1ins 460 NotBIG # # U with 2for 1rep 780 NotBIG # + U with 2for 1ins,1del 470 NotBIG # O U with 1for 1ins,1del 420 BIG # P U with 1for 1ins,1rep 1950 BIG # � U with 1for 1ins 400 NotBIG # � U with 2for 1rep 1170 BI

Table 3: U (Update Nr.); AT (Analysis Time in � O ); Res (Re-
sult).

In each case, it can be noted that the verification runs in at
most seconds. At this time we can make no definitive state-
ment on the runtime impact of the optimization. The eager
optimization decreases update times by about 30% in execu-
tion time and 50% in memory usage in average for the queries
in the delete-intensive category in the Table above, for the
datasets ranging from 30MB to 100MB. Although this gives
an indication that the optimization is sometimes useful, these
updates reflect an extreme case where both time and space us-
age are affected most significantly by the use of eager evalua-
tion. In addition, the underlying update API in the Galax ver-
sions we tested on was not tuned for performance, and hence
we do not believe a convincing test of the effect of evaluation-
strategy optimization can emerge from testing on top of Galax
0.3.5 or 0.4.0.

5 Conclusions and Related Work

One contribution of this paper is an exploration of semantic is-
sues around XQuery updates. We hope that formalizing eval-

uation in terms of concrete updates, single-step operators, and
ordering policies will make it easier to look at alternative se-
mantics, and to study optimizations of the standard semantics.
The optimizations we present in Section 3 are obviously only
a few that can be considered for XQuery updates, but they give
a feel for the difficulties that arise in defining sound optimiza-
tions. But because many applications define bulk updates well
before their use, an optimization requiring computationally-
intensive static analysis to check soundness may well be feasi-
ble. Certainly our current experimental results on the overhead
of analysis time are encouraging. Of course, these analyses ad-
dress the question of whether a particular optimization can be
done soundly at all. A question for future work is what sort of
cost model is needed to determine whether a sound optimiza-
tion should be done. The key component of our analysis is
an algorithm for determining statically whether an update can
affect the value of an XPath expression. As future work, we
plan to investigate other uses of this algorithm, for transaction
management and access-control.

Related Work. A detailed description of the algorithm ver-
ifying soundness of the eager optimization was presented in
[CAV05], in the context of a simple tree update language
based on navigational XPath. Some of the experiments of
Section 4 and the undecidability proof of Binding Indepen-
dence are also from [CAV05]. Most of the XQuery-specific
discussion, including semantics, strictness-issues in the API,
and ordering optimization, is not contained in [CAV05].

The snapshot semantics for XML updates has been stud-
ied in [WS00, WS02, SIGMOD01, PlanX04] and earlier for
semistructured-data in [ABS99, IJDL97]. [SIGMOD01] con-
siders an implementation of the snapshot semantics which re-
lies on mapping them to SQL updates. Throughout this pa-
per, we consider a restriction of the syntax and the snap-
shot semantics of XML Updates as described in [PlanX04],
since the language of [PlanX04] is both the one adopted
in Galax [VLDB03, ECOOP03] and being discussed at
W3C [W3C04]. Some preliminary hints on read-write con-
flicts and write-write conflicts are sketched in the master the-
sis by P.Lehti [WS02] and a discussion on update seman-
tics is included in the W3C draft on XQuery Update Lan-
guage [W3C04] and in a proprietary proposal [MS02]. A
suitable extension of SQL with XQuery-like data manipula-
tion primitives is implemented as part of the XML:DB Initia-
tive Project [EEXTT02]. A suitable extension of SQL with
XQuery-like data manipulation primitives is implemented as
part of the XML:DB Initiative Project [EEXTT02]. Major
RDBMS vendors [Oracle03, ICDE01, SQLServer05] and na-
tive XML vendors are providing their own ad-hoc solutions
for XML updates. One interesting approach is that of MS
SQL Server 2005 [ICDE01, SQLServer05], where update-
grams are used to perform transformations from a before-state
to an after-state.



Past work on relational updates and non-
deterministic/deterministic transactional languages is very
pertinent to our work [PODS88, TODS01, AI91, Infix98].
[TODS01] investigates the problem (shown to be decidable
for a language fragment) of applying update methods to a
set of objects in an arbitrary order. [AI91] considers the
bounded-iteration construct for each x in R � p do, whose
execution is the concatenation in arbitrary order of transaction
constituted by update statements on relational tuples, and
investigates conditions for which a procedural implementation
reduces to a declarative one. Work on static analysis of rule
conflict in active databases (e.g. [TODS00]) does not directly
address optimization of high-level updates, but has similar
aims to the non-interference algorithm used in our soundness
test. Given the significant differences between XML and
relational updates, these results cannot be applied directly to
the XQuery setting. In addition, the existence of decision
procedures for satisfiability of navigational XPath on ordered
trees makes static analysis of navigational updates much more
feasible than their relational counterparts [PODS05].

There has been considerable work on static analysis of
other XML query and transformation languages. A good sum-
mary, focusing on the type-checking problem, can be found
in [ICDT05]. [VLDB2003] focuses on static analysis for
optimization, giving a compile time DTD-based analysis of
XQuery and an optimization based on the analysis output. Be-
cause XQuery cannot perform destructive updates, this kind of
approximate analysis is much different than ours. Other anal-
yses work at the level of query plans or transaction plans. An
example that has a similar flavor to our work on ordering opti-
mization is [DBPL03], which analyzes query plans to remove
unneeded ordering operations. Our notion of non-interfering
updates has some similarity to work on analysis of concur-
rency control for XML [ISADS03]. This work (and its pre-
decessor papers) analyze at the level of transaction schedules,
not the update language.
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6 Appendix
The DTD for our sample is shown in Figure 4.

name

item *

category

people
*

id

person

profile

name
homepage

creditcard

income
interest

country

province

zip

city

address

location

*open_auctions

*
europe namerica asia

regions

* *

open_auction

initial

current
bidder

itemref*
seller

person

incategory
+

category

mailbox

from to

site
...
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Figure 4: XMark auction DTD

6.1 Experimental Data

The text of update statements used in experiments is shown in
the following:��� ���� �����
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