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ABSTRACT
We describe GALATEX [10], the first complete implementation of
XQuery Full-Text, a W3C specification that extends XPath 2.0 and
XQuery 1.0 with full-text search capabilities. XQuery Full-Text
provides composable full-text search primitives such as simple key-
word search, Boolean queries, and keyword-distance predicates.
GALATEX is intended to serve as a reference implementation for
XQuery Full-Text and as a platform for addressing new research
problems such as scoring full-text query results, optimizing XML
queries over both structure and text, and evaluating top-k queries
on scored results. GALATEX is an all-XQuery implementation ini-
tially focused on completeness and conformance rather than on ef-
ficiency. We describe its implementation on top of Galax, a com-
plete XQuery implementation and identify some performance chal-
lenges, possible solutions, and their interactions with XQuery im-
plementations.

1. INTRODUCTION
The ability to search both the structure and text content of XML

documents is gaining importance with the increase of large XML
repositories such as the United States Library of Congress docu-
ments [20], medical data in XML such as HL7 [16], and the IEEE
INEX data collection [19]. Querying XML repositories rich in text
content requires sophisticated full-text search features ranging from
matching individual keywords to combining matches with Boolean
operators and with word distances, stemming, and stop words.

XML querying is a well-studied topic, with several powerful
database-style query languages such as XPath 2.0 [29] and XQuery
1.0 [28] set to become W3C standards. The XQuery expression
given below is a typical query on the US Library of Congress repos-
itory that selects congressional bills with actions that relate to “non-
immigrant status”, such as bills that amend the Immigration and
Nationality Act. The query returns the descriptions of such bills
that have been introduced since 2002:

for $b in //bill
where fn:contains($b//action, "non-immigrant status")
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and $b//action-year >= 2002
return <bill> {$b/description} </bill>

The query applies the XQuery substring-matching function
fn:contains [34] to the text nodes contained in action elements.
As discussed in [1], sub-string functions in XQuery cannot ex-
press more complex full-text queries, such as restricting the or-
der and distance between words. These limitations are due to the
XQuery data model, which does not represent positions of words
in input documents. Word positions are necessary to compute dis-
tance and to evaluate order predicates. Therefore, even if custom
XQuery functions were defined for each full-text search primitive,
they would not be fully composable without extending the data
model.

XQuery Full-Text [30] is an extension of XQuery that supports
fully composable full-text search primitives defined on a data model
of words and positions. The language is inspired by TeXQuery [1],
a proposal to the W3C Full-Text Task Force. XQuery Full-Text
provides powerful full-text search primitives such as simple word
search, Boolean queries, word distance as well as stemming, reg-
ular expressions and stop words. XQuery Full-Text also supports
scoring and top-k ranking of query results. We refer to the XQuery
Full-Text search primitives as FTSelections. All FTSelections are
defined on a data model, called AllMatches, which represents words
and their positions in documents. Because the semantics of each
FTSelection is defined in terms of operators on the AllMatches data
model, the FTSelections are fully composable.

The key problems when implementing XQuery Full-Text are : (i)
choosing a representation for the AllMatches data model; (ii) im-
plementing the semantics of each full-text primitive on AllMatches;
and (iii) processing input documents to provide the word positions
used in AllMatches. In GALATEX,1 our strategy is to employ XML
and XQuery directly to solve these problems. First, we implement
the AllMatches data model in XML itself [30]. Second, we im-
plement each full-text primitive as a native XQuery function that
takes one or more AllMatches values and produces an AllMatches
value. Last, we pre-process each input document to produce auxil-
iary XML documents that map each word to their positions in the
input documents; these auxiliary documents are accessed by the se-
mantic functions. This implementation strategy is both general and
expedient. By using XML and XQuery themselves to implement
XQuery Full-Text, we were able to rapidly prototype a complete
implementation of the language. In addition, our technique can be
used with any XQuery implementation.2

1http://www.galaxquery.org/galatex
2See http://www.w3.org/XML/Query for a list of XQuery imple-
mentations.



XQuery Full-Text supports scoring and ranking of query results
and permits any ranking method that satisfies the XQuery Full-Text
scoring requirements [30, 32]. In GALATEX, we adapt the proba-
bilistic relational algebra [14, 23] to AllMatches by extending each
full-text primitive with the ability to manipulate scores. Our imple-
mentation satisfies the XQuery Full-Text scoring requirements.

When implementing GALATEX, we have focused more on com-
pleteness and conformance than on efficiency. By focusing on com-
pleteness, GALATEX can serve as a reference implementation of
XQuery Full-Text and as a platform for experimenting with new
research ideas for scoring XML data, optimizing XML queries on
both structure and content, and evaluating top-k queries. Ultimately,
we want GALATEX to be both complete and efficient. One of
GALATEX’s performance bottlenecks is the size of the AllMatches
values generated by each FTSelection. We discuss several ways of
optimizing the evaluation of FTSelections, including logical rewrit-
ings of the full-text query and the optimization of XML queries on
both structure and content.

In particular, this paper makes the following contributions:

• We present a general technique for implementing XQuery
Full-Text using an existing XQuery implementation.

• We describe GALATEX, the first complete implementation
of XQuery Full-Text. GALATEX is implemented almost en-
tirely in XQuery itself. In addition to a command-line in-
terface, GALATEX includes a browser interface that permits
users to execute both the XQuery Full-Text use cases [31]
and their own queries.

• We adapt the scoring method for the probabilistic relational
algebra [14, 23] to AllMatches and show that this adaptation
satisfies XQuery Full-Text’s scoring requirements.

• We identify some performance challenges, possible solutions,
and their interactions with existing XQuery implementations.

We begin with an overview of XQuery Full-Text in Section 2.
Section 3 describes general implementation techniques and their
realization in GALATEX. Advanced evaluation strategies are con-
sidered in Section 4. We conclude and present the related work in
Section 5.

2. THE XQUERY FULL-TEXT LANGUAGE
We introduce XQuery Full-Text search and scoring through ex-

amples and highlight some key features of the language. We refer
the reader to the language specification [30] and the language use
cases [31] for more details on the language.

2.1 Full-Text Search
XQuery Full-Text extends XQuery with a full-text search ex-

pression (FTContainsExpr) and with a scoring function (ft:score()).
The FTContainsExpr takes an evaluation context (i.e., a sequence
of XML nodes) and a full-text search (FTSelection) condition and
returns a Boolean value that is true if and only if some node in
the evaluation context satisfies the condition. Because FTContain-
sExpr is a first-class XQuery expression, full-text search is seam-
lessly integrated into XQuery and XPath. In particular, since FT-
ContainsExpr returns a value in the XQuery data model (i.e., a
Boolean value), it can occur wherever a Boolean value is permitted
in other XQuery expressions. The following expression illustrates
the interaction of full-text search with an XPath expression.

//book[.//section ftcontains
"usability" && "testing"]/title

The expression returns the titles of books with at least one section
that contains the search tokens usability and testing. The FTCon-
tainsExpr is used as a predicate that returns a Boolean value. Its
evaluation context is an XQuery expression, i.e., .//section within
//book, and its FTSelection is “usability” && “testing”. This query
also illustrates how XQuery Full-Text uses existing XQuery con-
structs such as path expressions to specify the evaluation context
and the returned nodes (/title).

An FTSelection may be used to express matching individual words
(FTWord), Boolean connectives between keywords (FTAnd, FTOr
and FTNegation), order predicates (FTOrdered), proximity distance
between words (FTDistance and FTWindow), scoping within sen-
tences and paragraphs (FTScope) and the ability to specify the num-
ber of occurrences of words (FTTimes). The query below illustrates
how these primitives can be combined. It returns true if some book
in the evaluation context (//book) contains the tokens usability and
testing in the same sentence within a window of five words.

//book ftcontains
"usability" && "testing" same sentence window 5

XQuery Full-Text can also embed XQuery expressions. The ex-
pression below returns true if some article in the evaluation context
contains an occurrence of a title of one of Paul Auster’s books. The
XQuery expression //book[./author = ”Paul Auster”]/title specifies
the search tokens, and the keyword any specifies that at least one of
the titles can occur in the articles.

//article ftcontains
(//book[./author = "Paul Auster"]/title) any

In addition to FTSelections, XQuery Full-Text has a rich set of
matching modifiers called, FTMatchOptions, such as stemming,
stop-words, regular expressions, case sensitivity, diacritics, special
characters, synonyms, languages, and ignoring specified XML sub-
trees [3]. FTMatchOptions operate at the level of individual words
and can be seamlessly composed with any FTSelection to modify
how the full-text search is performed. The expression below re-
turns true if some book in the evaluation context contains any to-
kens derived from usability and testing after applying stemming.
For example, a book that contains user and tests would satisfy the
full-text search condition because usability and user share the stem
use, and testing and tests share the stem test.

//book ftcontains
"usability" && "testing" with stemming

The last example below is similar to the one above, but requires
that search tokens occur within a window of five words, ignoring
stop-words when computing this window.

//book ftcontains
"usability" && "testing"
with stemming window 5 without stopwords

2.2 Full-Text Scoring
The previous expressions all yield Boolean values, but often users

require the results of full-text search to be scored and ranked by the
quality of the match. In XQuery Full-Text, scoring is achieved us-
ing the second-order function ft:score(), which returns one score for
each node in the set of input XML nodes. This function is second
order because it accepts an FTSelection expression, not a value, as
an argument – it is also the only second-order function in XQuery.

The score of a node captures its relevance to an FTSelection.
For example, the expression below returns a sequence of scores for
each book in the evaluation context.



let $scores := ft:score(//book,
"usability" weight 0.8 && "testing" weight 0.2)

Note that user-specified weights can be applied to compute score.
In this example, usability is given a weight of 0.8 and testing,
a weight of 0.2. The exact means by which ft:score uses these
weights is implementation-defined.

The ft:score() function provides the framework for supporting
different scoring mechanisms, but does not dictate the exact scor-
ing mechanism itself. This flexibility is necessary, because vendors
are unlikely to agree on the same scoring technique. In fact, scor-
ing for XML is an active area of research (e.g., see [9, 13, 15, 18,
21, 27]), and many vendors view scoring techniques as product dif-
ferentiators. However, there are two properties that every scoring
mechanism must satisfy [32]: (i) the score of a node in the eval-
uation context must be 0 if and only if the node does not satisfy
the full-text condition specified in FTSelectionWithWeights. Other-
wise, its score must be in the interval (0,1]; (ii) for the nodes in the
evaluation context, a higher score value implies a higher degree of
relevance to FTSelectionWithWeights.

The ft:score() function returns a sequence of floating-point num-
bers, which may occur wherever a number is permitted in other
XQuery expressions. This enables the expression of powerful queries
such as the one below, which computes the top-10 results for the
previous query.

for $result at $rank in
(for $node in //book
let $score := ft:score($node,

"usability" weight 0.8 && "testing" weight 0.2)
order by $score descending
return <result score="{$score}">{$node} </result>)

where $rank <= 10
return {$result}

The inner FLWOR expression returns the results in descending or-
der by score, and the outer FLWOR expression only returns the top
ten of these results.

Our last example illustrates how FTContainsExpr and ft:score()
can be combined to search based on one condition and score based
on another one. The expression below selects books that contain
usability and analysis, and these books are scored based on usabil-
ity and testing.

for $book in //book[. ftcontains "usability" && "analysis"]
let $score := ft:score($book, "usability" weight 0.8 &&

"testing" weight 0.2)
return <result score="{$score}"> {$book} </result>

3. XQUERY FULL-TEXT IMPLEMENTA-
TION

Numerous strategies exist for implementing XQuery Full-Text
– as many strategies as there are for implementing XQuery itself!
Possible strategies include extending an existing XQuery engine
with native support for the XQuery Full-Text data model and op-
erators; extending an existing full-text search engine to serve as an
XQuery Full-Text co-processor; or translating XQuery and XQuery
Full-Text into another query language, such as SQL. XQuery Full-
Text relies on the AllMatches data model that captures words and
their positions. Regardless of the implementation strategy chosen,
the key implementation problems are representing the AllMatches
data model, implementing the semantics for each FTSelection, and
making the word positions used in the input documents accessible
to the AllMatches data model.

Because new languages benefit from the rapid development of
experimental implementations, our strategy was to employ XML

and XQuery directly to implement XQuery Full-Text. We first de-
scribe key implementation techniques and then their realization in
GALATEX.

3.1 General Implementation Techniques

3.1.1 Preprocess Documents & Queries
In the XQuery data model, the text node is the smallest unit

representing document content, but in the XQuery Full-Text data
model, the smallest unit is a word and its position within a docu-
ment or phrase. We define an XML value, called TokenInfo, to rep-
resent a word and its position in an input document or in a search
phrase. Two preprocessing steps yield TokenInfo values: the text in
input documents is tokenized off-line, and the search phrases in a
full-text query are tokenized at query evaluation time.

A TokenInfo value contains a word and a unique identifier that
captures the relative position of the word in a document or in a
phrase. When tokenizing document text, a TokenInfo may also con-
tain the XML node, sentence, and paragraph that directly contain
the word. The DTD for a TokenInfo value is below.

<!ELEMENT TokenInfo
(Token, Identifier, Node?, Sentence?, Para?)>

As an example, Figure 1 contains a tokenized document in which
each word in the text has a corresponding TokenInfo identifier, which
contains the global position of the word in the document. This in-
formation could be augmented with the appropriate node, sentence
and paragraph identifiers.

We define abstract functions for pre-processing search phrases
and documents. Tokenization of a search phrase is performed by
the getSearchTokenInfo() function, which takes a search string and
returns a sequence of TokenInfos. We explain in Section 3.1.4 how
the match-options argument is used during tokenization.

getSearchTokenInfo($searchPhrase as xs:string,
$matchOptions as FTMatchOptions) as TokenInfo*

The following abstract functions access tokens and their posi-
tions in documents. The getTokenInfo() function takes an evalu-
ation context of zero or more element nodes and a search word
specified as a TokenInfo value and returns all the positions of the
word in the given evaluation context. The getPositions() function
is similar, but restricts the evaluation context to one element node.
getTokenInfo() and getPositions() can both be defined in terms of
the containsPos() function, which returns true if the given evalua-
tion context contains the given word. The wordDistance() function
returns the distance between two words given any match options
that might affect the FTWindow or FTDistance primitives.

getTokenInfo($evalContext as element()*,
$searchToken as TokenInfo ) as TokenInfo*

getPositions($node as element(),
$searchToken as xs:string ) as TokenInfo*

containsPos($node as element()*,
$searchToken as TokenInfo ) as xs:boolean

wordDistance($token1 as TokenInfo,
$token2 as TokenInfo,
$mo as FTMatchOptions ) as xs:integer

3.1.2 The AllMatches Data Model
An AllMatches value specifies all possible position solutions to

a full-text search query and can be viewed as a propositional logic
formula in disjunctive normal form (DNF) [1]. We represent in-
stances of the AllMatches data model using XML values that con-
form to the following DTD:



<book(1)>

  <author(2)>Millicent(3) Marigold(4)</author>

  <content(5)>

    <p(6)> The(7) usability(8) of(9) software(10) measures(11) how(12) well(13) the(14)

             software(15) provides(16) support(17) for(18) quickly(19) achieving(20)

             specified(21) goals(22).

    </p>

    <p(23)> The(24) users(25) must(26) be(27) and(28) feel(29) well-served(30).

             Software(31) usability(32) is(33) a(34) good(35) measure(36) of(37) that(38).

    </p>

  </content>

  <title(39)>Conquering(40) the(41) systems(42)</title>

</book>


Figure 1: XML document fragment with positions

<!ELEMENT AllMatches (Match)*>
<!ELEMENT Match (StringInclude|StringExclude)*>
<!ELEMENT StringInclude TokenInfo>
<!ELEMENT StringExclude TokenInfo>

Each Match in an AllMatches corresponds to one of the disjuncts
in the DNF formula. Each StringInclude in a Match corresponds
to the proposition that the evaluation context node must contain a
word position, and each StringExclude specifies that the evaluation
context node should not contain a word position.

3.1.3 The FTSelections
Each FTSelection function takes one or more AllMatches values

and returns one AllMatches. For example, consider the sample doc-
ument in Figure 1 annotated with word positions and the following
full-text query, which returns those books that contain paragraphs
containing words similar to usability and software case sensitive
within ten words of each other:

//book[.//p ftcontains ("usability" with stemming) &&
("software" case sensitive) with distance at most
10 words]/title

Each full-text query has an associated query evaluation plan of
FTSelections. Figure 2 contains the plan for the above query. We
distinguish between two stages in the evaluation plan. The bottom
two levels of the plan construct AllMatches values using the posi-
tion functions described in Section 3.1.1. Once we have the first
AllMatches, all the other primitives manipulate AllMatches only.

FTWordsSelectionAny

Token: usability

MatchOption: stemming


FTWordsSelectionAny

Token: software

MatchOption: case insensitive


Word Positions (TokenInfo)


FTAnd


FTDistanceAtMost

(at most 10 words)


Build

AMs


Manipulate

AMs


AM
 AM


AM


AM


FTContains

Evaluation


Context


Filtered

Evaluation


Context


getPositions()
 getPositions()


Figure 2: Full-Text XQuery evaluation plan

A variety of primitives build AllMatches depending on the query
search criteria: a single word (FTSingleSearchToken), any word
or all words from the set of given phrases (FTWordsSelectionAny-
Word, FTWordsSelectionAllWord), and any or all phrases (FTWords-
SelectionPhrase, FTWordsSelectionAny, FTWordsSelectionAll).

In Figure 2, the two AllMatches representing the tokens usabil-
ity and software become the inputs to the FTAnd primitive. The
resulting AllMatches is given in Figure 3. It contains six possible
Matches. These AllMatches are further filtered by the FTDistance
primitive. The final AllMatches contains only the first, fourth, and
sixth Matches (see Figure 3). Once those matches are generated,
they are passed to FTContains(), the top-most node in Figure 2, in
order to filter the XML nodes in the evaluation context.

3.1.4 The Match Options
Match options are modifiers that apply to each of the search

words. If a match option is not specified explicitly in the query, then
its default value is used. The default match options are: case in-
sensitive, without special characters, without regular expressions,
without stemming, without stop words, element content is not ig-
nored, English-language selected, without thesaurus, and diacrit-
ics insensitive [30]. When a match option is specified explicitly in
the query, it overrides the default for the phrases to which it applies.
The XML representation of match options is:

<!ELEMENT FTMatchOptions (FTMatchOption)*>
<!ELEMENT FTMatchOption (FTCaseOption|FTDiacriticsOption|

FTSpecialCharOption|FTThesaurusOption|FTStemOption|
FTRegexOption|FTLanguageOption|FTStopWordOption|
FTIgnoreOption)>

The abstract function applyMatchOption() applies all match op-
tions from FTMatchOptions to a list of search tokens and returns
the token information for all the modified search words.

applyMatchOption($mo as FTMatchOptions,
$searchToken as xs:string* ) as TokenInfo*

3.2 GalaTex Implementation
We describe how these general techniques are realized in our

GALATEX architecture depicted in Figure 4. A demonstration of
GALATEX and of the XQuery Full-text use cases are available at:
http://www.galaxquery.org/galatex/. GALATEX is implemented on
top of the Galax XQuery engine [11],3 a complete XQuery imple-
mentation that supports functions and modules.

GalaTex Engine
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Figure 4: Architecture of GalaTex

In the upper left of Figure 4, GALATEX preprocesses input doc-
uments, and for each distinct word, produces one document con-
taining all the positions of that word, represented by TokenInfo val-
ues. These documents essentially contain inverted lists, which map
words to their positions. These inverted-list documents are the in-
puts to getPositions() and related functions.
3http://www.galaxquery.org
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Figure 3: AllMatches for ”usability” with stemming && ”software” case sensitive

In the lower left of Figure 4, GALATEX translates XQuery Full-
Text queries into equivalent XQuery queries by mapping each FT-
Selection into a call to the corresponding XQuery function. The
XQuery functions themselves (upper right of Figure 4) are imple-
mented in an XQuery library module, where each function imple-
ments one FTSelection primitive.

On the right of Figure 4, Galax takes the input documents, the
translated query, and the library module of XQuery functions, eval-
uates the translated query, and yields the result as an XML docu-
ment. The final result contains the relevant XML document frag-
ment in which the search words are highlighted.

The GALATEX library module uses XQuery’s optional schema
import and validation features, which are supported by Galax. These
features are not required by our implementation, but are useful be-
cause they guarantee that all AllMatches and FTMatchOptions val-
ues are valid instances of the corresponding types.

3.2.1 Document Preprocessing
The document pre-processing step is done off-line and the result

is a set of documents that contain TokenInfo values. Our tokenizer
assumes that words are delimited by punctuation and whitespace
symbols as in English. We chose to implement the TokenInfo iden-
tifier using Dewey numbering [26]. The Dewey number encodes
the depth-first node path from the document root to each node. For
each word, the identifier contains the Dewey number of the node
containing the word appended with the word’s absolute position in
the document. For example, in Figure 5(a), the first occurrence of
usability has identifier 1.3.1.1.4, indicating it is contained in the
node with identifier 1.3.1.1 and it is the fourth word in the entire
document. For each distinct word identified during tokenization,
we create one inverted-list document that contains all of the word’s
TokenInfo values. Figure 5(b) contains the inverted lists for soft-
ware, usability, and users.

We chose to represent the inverted lists in XML format. The
benefit is that all the abstract functions that manipulate positions
described in Section 3.1.1 are expressed as XQuery functions oper-
ating over XML values. For example, the XQuery implementation
of getTokenInfo() is given below.

declare function
fts:getTokenInfo( $evalCtx as element()*,

$searchToken as fts:TokenInfo)
as fts:TokenInfo*

{
for $node in $evalCtx,

$pos in fts:getPositions($node,
$searchToken/@word)

return
<fts:TokenInfo word="{$searchToken/@word}"
prefixPos="{fn:string($pos/@prefixPos)}"
absPos="{fn:string($pos/@absPos)}"/>

}
For each node $node in the evaluation context, and for each oc-
currence of the search word in that node, a TokenInfo value is re-
turned. The getPositions function accesses the inverted list for

$searchToken and returns only those positions that are included
in $node. Testing whether a word position is contained XML node
is done in containsPos() operator, which compares the integer com-
ponents of Dewey values hierarchically (e.g., 1.10.1 > 1.9.2).

3.2.2 Query Parsing & Translation
As shown in Figure 4, the GALATEX parser translates a full-text

query into an equivalent XQuery query. This design was chosen
to improve portability, to avoid direct impact on the Galax XQuery
engine, and to speed implementation. This design also allowed us
to implement and test subsets of the XQuery Full-Text specification
quite easily while treating the XQuery engine itself as a black box.

Currently, the parser replaces each full-text expression in the
original query with the appropriate composition of FTSelection func-
tion calls. Match options are propagated to the relevant FTWordsS-
election calls. For example, consider the following full-text query:

//book[.//p ftcontains ("usability" with stemming) &&
("software" case sensitive) without stemming with
distance at most 10 words ordered]/title

The GALATEX parser produces the following XQuery query:

//book[
( let $ec_1 := (.//p ) return
fts:FTContains( $ec_1,

fts:FTOrdered(
fts:FTWordDistance(-1, 10,

fts:FTAnd(
fts:FTWordsSelectionAny( $ec_1, "usability",

fts:MO_FTStemOption("with stemming",
<fts:FTMatchOptions/>), "1"),

fts:FTWordsSelectionAny( $ec_1, "software",
fts:MO_FTStemOption("without stemming",
fts:MO_FTCaseOption("case sensitive",
<fts:FTMatchOptions/>)), "2"))))))

]/title

In the translated query, each search string has been replaced with
a call to the FTWordsSelectionAny function. In addition to the
search string, each of these calls also passes the evaluation con-
text (i.e., //book//p), the applicable match options, and the position
of the search string in the original query. Although it is used in mul-
tiple calls, the evaluation context is bound to a variable and is only
evaluated once. Note also that the match option without stemming
has been propagated into each FTWordsSelectionAny call (except
for usability with the explicit with stemming override).

The operators ’&&’, ’distance’ and ’ordered’ have been replaced
with calls to the full-text functions FTAnd, FTWordDistance and
FTOrdered, respectively. The FTOrdered function uses the posi-
tion information for each search string in the query to ensure that
words are considered in the order in which they appear in the query.

To do this translation, the parser requires and uses very little
knowledge of the XQuery language. In fact, only three tokens were
added to our grammar to handle the XQuery language and its over-
lap with the XQuery Full-Text grammar. These additional tokens:
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             measures(1.3.1.1.7) how(1.3.1.1.8) well(1.3.1.1.9) the(1.3.1.1.10)

             software(1.3.1.1.11) provides(1.3.1.1.12) support(1.3.1.1.13)

             for(1.3.1.1.14) quickly(1.3.1.1.15) achieving(1.3.1.1.16)

             specified(1.3.1.1.17) goals(1.3.1.1.18).

    </p>

    <p(1.3.2)> The(1.3.2.1.19) users(1.3.2.1.20) must(1.3.2.1.21) be(1.3.2.1.22)

             and(1.3.2.1.23) feel(1.3.2.1.24) well-served(1.3.2.1.25).

             Software(1.3.2.1.26) usability(1.3.2.1.27) is(1.3.2.1.28) a(1.3.2.1.29)

             good(1.3.2.1.30) measure(1.3.2.1.31) of(1.3.2.1.32) that(1.3.2.1.33).

    </p>

  </content>

  <title(1.4)>Conquering(1.4.1.34) the(1.4.1.35) systems(1.4.1.36)</title>

</book>


(a) XML document fragment with Dewey positions


Figure 5: Dewey positions and AllMatches example

1. identify the start of XQuery expressions and sub-expressions
in order to extract the evaluation context for a full-text ex-
pression,

2. identify the return to XQuery from a full-text expression, and

3. disambiguate between parenthesized XQuery expressions and
parenthesized full-text expressions in order to identify XQuery
expressions embedded within a full-text expression.

Since XQuery code can contain full-text expressions which, in
turn, can contain XQuery expressions, arbitrary nesting of the lan-
guages is possible and is supported by the parser. In the following
example, the result of the embedded XQuery expression is used as
a search string.

//book[.//p ftcontains
(//book[./author ftcontains "Marigold"]/title)
with stemming window at most 15]/title

The translated XQuery for the above expression is:

//book[
( let $ec_1 := ( .//p ) return

fts:FTContains( $ec_1,
fts:FTWindow(-1, 15,

fts:FTWordsSelectionAny( $ec_1,
(//book[

( let $ec_2 := ( ./author ) return
fts:FTContains( $ec_2,

fts:FTWordsSelectionAny( $ec_2,
"Marigold",
<fts:FTMatchOptions/>, "1")))

] /title),
fts:MO_FTStemOption( "with stemming",

<fts:FTMatchOptions/>), "2"))))
]/title

As expected, all of the XQuery-specific code is passed unchanged
to the XQuery engine, and each full-text expression has been re-
placed with an FTContains function call (even in the case where
one full-text expression is nested inside another). Note that each
embedded XQuery expression in the original query must be en-
closed in parentheses.

3.2.3 Query Evaluation

3.2.3.1 FTSelections.
A library module of XQuery functions implements the semantics

of the FTSelection primitives. We return to a simplified version of
the query in Section 3.1.3 to illustrate how these functions work.

//book[.//p ftcontains ("usability" with stemming) &&
("software" case sensitive) with distance at most
10 words]/title

The equivalent XQuery expression generated by the parser is:

//book[
( let $ec_1:= ( .//p ) return

fts:FTContains( $ec_1,
fts:FTWordDistance(-1, 10,

fts:FTAnd(
fts:FTWordsSelectionAny( $ec_1, "usability",

fts:MO_FTStemOption( "with stemming",
<fts:FTMatchOptions/>), "1"),

fts:FTWordsSelectionAny( $ec_1, "software",
fts:MO_FTCaseOption( "case sensitive",
<fts:FTMatchOptions/>), "2")))))]/title

This translation corresponds to the query plan in Figure 2. We
describe this plan “bottom up”, beginning with the inner-most func-
tion calls to fts:FTWordsSelectionAny and ending with the outer-
most call to fts:FTContains. Note that this code is valid, executable
XQuery code and not merely a pseudo-code description of a query
plan.

The first function, fts:FTWordsSelectionAny, constructs the ini-
tial AllMatches. It calls the FTSingleSearchToken() function whose
definition in XQuery expression is below.

declare function
fts:FTSingleSearchToken(

$evalCtx as element()*,
$searchToken as fts:TokenInfo,
$matchOptions as fts:FTMatchOptions,
$queryPos as xs:string ) as fts:AllMatches

{
<fts:AllMatches>
{
for $position in

fts:getTokenInfo($evalCtx, $searchToken)
return

<fts:Match>
<fts:StringInclude

queryString="{$searchToken/@word}"
queryPos="{$queryPos}">{ $position }

</fts:StringInclude>
</fts:Match>

}
</fts:AllMatches>

}

The above function obtains the positions of the search token and
constructs one AllMatches that contains one Match per position.
This function uses getTokenInfo() described in Section 3.2.1. We
defer discussion of match options to Section 3.2.3.2. The last argu-
ment to FTSingleSearchToken() is ($queryPos), which is a variable
that contains the relative position of the search word in the full-text
query. It is used in conjunction with FTOrder. Figure 5(c) shows
the AllMatches for usability with stemming.

The AllMatches values constructed for usability and software are
inputs to the FTAnd function, which computes the Cartesian prod-
uct of their Matches as follows:



declare function
fts:FTAnd( $allMatches1 as fts:AllMatches,

$allMatches2 as fts:AllMatches)
as fts:AllMatches

{
<fts:AllMatches>
{

for $match1 in $allMatches1/fts:Match,
$match2 in $allMatches2/fts:Match

return
<fts:Match>
{ $match1/*, $match2/* }
</fts:Match>

}
</fts:AllMatches>

}

This function computes all possible pairs of Matches for usability
and software and returns an AllMatches value. This value is input to
FTDistance, which selects those matches that satisfy the distance
condition as follows:

declare function
fts:FTWordDistanceAtMost(

$n as xs:integer,
$allMatches as fts:AllMatches,
$matchOptions as fts:FTMatchOptions)

as fts:AllMatches
{

<fts:AllMatches>
{

for $match in $allMatches/fts:Match
if fn:empty($match/fts:StringInclude) then
$match

else
let $sorted:= for $si in $match/fts:StringInclude

order by $si/fts:TokenInfo/@absPos
ascending return $si

where every $idx in (1 to fn:count($sorted) - 1)
satisfies fts:wordDistance(

$sorted[$idx]/fts:TokenInfo,
$sorted[$idx+1]/fts:TokenInfo,
$matchOptions) <= $n

return
<fts:Match>

{ $match/fts:StringInclude }
{
let $sortedStrMatch:=

for $si in $match
order by $si/*/fts:TokenInfo/@absPos
ascending return $si

for $stringExcl in
$sortedStrMatch/fts:StringExclude

where some $stringIncl in
$sortedStrMatch/fts:StringInclude
satisfies fts:wordDistance(

$stringIncl/fts:TokenInfo,
$stringExcl/fts:TokenInfo,
$matchOptions) <= $n

return $stringExcl
}

</fts:Match>
}
</fts:AllMatches>

}

Intuitively, the matches that satisfy FTDistance are those for which
each pair of adjacent positions satisfy the distance condition. For
each of these matches, the included positions and only the excluded
positions that fall in the specified distance range are returned.

Finally, FTContains filters the evaluation context and returns
only those nodes that contain at least one match that satisfies all
the inclusion and exclusion constraints.

declare function
fts:FTContains( $evalCtx as element()*,

$allMatches as fts:AllMatches)
as xs:boolean {
some $node in $evalCtx

satisfies
(some $match in $allMatches/fts:Match
satisfies fts:satisfiesMatch($node, $match))

};

declare function
fts:satisfiesMatch( $node as element(),

$match as fts:Match )
as xs:boolean {
( every $stringInclude in $match/fts:StringInclude

satisfies fts:containsPos($node,
$stringInclude/fts:TokenInfo))

and
( every $stringExclude in $match/fts:StringExclude

satisfies not(fts:containsPos($node,
$stringExclude/fts:TokenInfo)))

};

3.2.3.2 Match Options.
In GALATEX, match options are translated by the parser into a

set of match option functions implemented in XQuery. A match op-
tion has the effect of expanding one search word to a set of words
that becomes the new set of search words for the current full-text
query. This expansion occurs in FTSingleSearchToken(), described
in Section 3.2.3.1, which applies applyMatchOption() before call-
ing getTokenInfo() for the current search word. The function returns
the positions of all words that result from applying match options
to the current search word. This interface is quite flexible and it
allows plugging in any match option implementation.

To implement match options we used the XQuery Functions and
Operators defined in [34], in particular, fn:matches, fn:replace,
fn:lower-case, fn:upper-case. Hence, any XQuery implementa-
tion that supports them can be used with GALATEX.

For example, to find the expansion set of a search word when the
case match option is set to case insensitive, we compare for equal-
ity the search word with each distinct word from the input docu-
ment. The list of distinct words is generated in the preprocessing
step. Both words are filtered by fn:lower-case function as in:

let $sToken:= $searchTokens/@word
for $docToken in fn:doc("list_distinct_words.xml")/

ListDistinctWords/invlist/@word
return

if (fn:lower-case($docToken)=fn:lower-case($sToken))
then $docToken
else ()

The same technique works when the regular expression match
option is active. For the special character option we replace the
special characters with the following regular expression ”.?” and
apply the above regular expression technique.

The stemming operation is language specific. GALATEX uses
Galax built-in stemmer implementation, which is Porter’s English
stemmer [22]. The stemmer reduces the English words to their
word stems. For example, the word connections would be reduced
to its stem connect.

Stop words are reflected in the implementation of FTWindow and
FTDistance primitives. More precisely, these primitives skip stop
words when specified. The remaining match options deal with
language specifics and character encoding problems. Their imple-
mentation is still underway.

3.3 Full-Text Scoring
In this section, we describe our implementation of a scoring tech-

nique in GALATEX. Recall that the specification of XQuery Full-
Text [30] does not mandate a specific scoring method. Rather, it
defines some requirements on score values based on the relevance
of query answers to a full-text expression (see Section 2.2).



The probabilistic relational algebra is a well-established scoring
method in Information Retrieval (IR) [23, 14]. This algebra oper-
ates on tuples with a score attribute. The score of a tuple represents
the probability that a tuple contains a word. A score formula is
associated with each algebraic operator which transforms its input
tuples scores into output tuples scores. Since each FTSelection in
our language can be viewed as an algebra operator as illustrated in
the query plan in Figure 2, we propose a natural adaptation of the
probabilistic scoring method to AllMatches and show that it pre-
serves the scoring requirements given in Section 2.

We first add a score field to the position structure described in
Section 3.1.1 to capture the score of individual positions. This cor-
responds to adding a score to each entry in the inverted list. Con-
ceptually, the score of an entry represents the probability that the
entry contains a given word. Hence, the score value should be a
float between 0 and 1. This value can be computed using tech-
niques such as tf (term frequency) and idf (inverse document fre-
quency) [24].

In order to compute the score of query answers, we associate a
score formula with each FTSelection. Each formula guarantees that
answers will have a score value between 0 and 1. The composition
of multiple formulas in a query plan still preserves that property.

• FTWord builds an AllMatches where each match is assigned
the score of the corresponding entry in the input inverted list.

• FTAnd(AM1, AM2): Given a match m1 in AM1 with score
s1, a match m2 in AM2 with score s2 and an output match m3

that contains m1 and m2, the score s3 of m3 is:
s3 = s1 × s2

This formula is similar to the one used for Boolean AND the
probabilistic relational algebra and preserves the fact that the
score of tuples has to be a value between 0 and 1.

• FTOr(AM1, AM2): Given a match m1 in AM1 with score s1,
a match m2 in AM2 with score s2 and an output match m3

that contains m1 and m2, the score s3 of m3 is:
s3 = 1 − (1 − s1) × (1 − s2)
If m3 contains only m1 or m2, its score will be equal to that
of m1 or m2.

• FTDistance and FTWindow accept an AllMatches AM as input
and return an AllMatches. Given a match m in AM with score
s, if m satisfies the FTSelection then its score s′ is:
s′ = s×f where f is a function associated with the FTSelec-
tion and evaluates to a value between 0 and 1. For example,
the function associated with FTDistance(AM, dist) is:
distance(m, dist) is f = 1 − s/dist.

Given a query plan, the final AllMatches carries the scores of
each match. In order to score a query answer (i.e., an XML node
in the evaluation context), we compose the scores of those matches
that are contained in that XML node. The composition formula is
similar to the one used for FTOr. One could use other composition
formulas such as max.

Note that we do not have specific scoring formulas associated
with FTNegation, FTOrder, FTScope and FTTimes. In our frame-
work, these operators do not modify the scores of their input tu-
ples. One could devise scoring formulas for each one of them (e.g.,
FTTimes could rely on the number of occurrences of a word for
scoring). One interesting direction is approximate matching. For
example, if two matches do not satisfy a distance, they might be
returned with a lower score.

4. EVALUATION STRATEGIES
Our strategy to implement the XQuery Full-Text language using

XML and XQuery is general and expedient, but not very efficient.
In this section, we explore improvements to the current query eval-
uation strategies. We divide this section into improvements on full-
text search and improvements on full-text scoring.

4.1 Full-Text Search
Given a query evaluation plan, an obvious optimization would be

to push any of the primitives (FTOrdered, FTDistance, FTWindow,
FTScope, FTTimes) as far down in the evaluation tree based on
their selectivity. This is akin to pushing selections in the relational
algebra. Figure 6(a) shows pushing FTOrdered. Another rewrit-
ing is short-circuiting the evaluation of FTOr by translating into
an XQuery ”or” (see Figure 6(b)). If one of the resulting branches
evaluates to true, there is no need to evaluate the other one.

Nodes in an evaluation context might be structurally related, i.e.,
some might be descendants of others. One could organize nodes
in the evaluation context in a way that guarantees that the smallest
number of context nodes are checked against AllMatches. A node
could be marked as an answer if it contains another node that has
already been marked as an answer. This would avoid checking that
node against AllMatches.

Materializing AllMatches at each step of a query evaluation tree
is one of the main performance bottlenecks when evaluating queries.
Pipelining, a well-studied query evaluation method in databases,
would reduce the size of materialized intermediate AllMatches. This
strategy is used in Quark,4 which implements the TeXQuery lan-
guage [1]. All our full-text primitives, except FTTimes, are non-
blocking (i.e., they permit full pipelining of matches in AllMatches).
FTTimes is partially blocking since it needs to materialize a certain
number of matches. Given n search keywords (searchToken 1, ...,
searchToken N), the pipeline query evaluation algorithm is as fol-
lows:

$EC <- XQuery/XPath
for $pos1 in getNextPosition_SortMerge(

unmarked($EC), $searchToken_1)
...
for $posN in getNextPosition_SortMerge(

unmarked($EC), $searchToken_N)
{

result <- applyPrimitives($pos1,..., $posN)
//check ancestor-descendant relationship
//by computing the least common ancestor (LCA):
if !empty(result) lca=LCA($pos1,..., $posN)
if !empty(lca) markNodes($EC, lca)
//stop condition:
if succeeded in marking new nodes then break OR
if allNodesMarked($EC) then break

}
output Boolean result or the marked nodes in $EC

We could apply the same pipelining idea to nodes in the evalu-
ation context (i.e., to produce one node at a time). This requires
pipelining the execution of the XQuery engine which might not al-
ways be possible depending on the engine that is being used. In
the last case, not all matches would need to be materialized for a
given context node. Figure 7 illustrates pipelining both nodes in the
evaluation context and AllMatches for the query given below.

book[.//p ftcontains "usability" && "software"
with distance at most 10 words]

A more ambitious strategy is fully integrating the XQuery Full
Text data model and operators into an XQuery engine. Our strat-
egy to implement each FTSelection as an XQuery function per-
mitted rapid prototyping, but unfortunately, semantic functions do
4http://www.cs.cornell.edu/database/Quark



FTWindow


FTDistance


FTOrdered


FTAnd


FTContains


FTOrdered


FTWindow


FTDistance


FTAnd


FTContains


FTWordsSelection

Token: usability


FTWordsSelection

Token: software


FTOr


FTDistance


FTContains


FTAnd


FTWordsSelection

Token: machine


FTWordsSelection

Token: usability


FTWordsSelection

Token: software


FTAnd


FTDistance


FTContains


FTWordsSelection

Token: machine


FTContains


OR


(a) 
FTOrder 
rewriting
 (b) 
FTOr 
rewriting


Figure 6: Logical rewritings

FTWordsSelectionAny

     Token: usability


FTWordsSelectionAny

     Token: software


instantiate the next pair of positions

(inverted lists)


FTAnd


FTDistanceAtMost

(at most 10 words)


empty?

yes
no


get next node in the EC


Figure 7: Pipelining Algorithm

not scale, nor do they permit the flexibility required to do query
optimization techniques across multiple FTSelections. Evolving
GALATEX into a scalable implementation is not simple. Taking
the step to a fully optimized evaluation strategy requires having
fine-grained algebra operators that can be manipulated and com-
posed with an XQuery algebra in order to optimize the integration
on queries on structure and text. This requires integrating the All-
Matches data model with scoring information into the XQuery data
model. In particular, one can see that in order to achieve early
pruning for top-k queries, we need to be able to push scoring in-
formation into an XQuery algebra. How this is achieved is an open
question. However, we believe that adapting the probabilistic rela-
tional algebra for scoring as explained in Section 3.3 is a first step
towards this integration. This would also enable scoring on both
structure and content as in [2].

4.2 Full-Text Scoring
In Section 3.3, we showed that in the current GALATEX imple-

mentation, in order to score an answer (i.e., a node in the evaluation
context), we produce an AllMatches that carries a score for each
one of the matches that it contains. This means that we need to ma-
terialize all the matches in the AllMatches produced by a full-text
evaluation plan. In the previous section, we discussed a pipelining
approach to reduce the need to materialize all intermediate results.
This conflicts with the need to materialize AllMatches to compute
final answer scores. In order to implement scoring and still benefit
from pipelining, we could estimate upper-bounds on the scores of
those matches that have not been materialized and on the number
of matches that a node might have in order to compute its scores
without having to materialize all its matches.

5. RELATED WORK AND CONCLUSION
In database and IR research, several languages have been pro-

posed for processing XML data on structure and text. The main
focus was put on extending existing XML query languages with
full-text search. However, unlike XQuery Full-Text, previous solu-
tions explore only a few full-text search primitives at a time (e.g.,
Boolean keyword retrieval [12, 35], keyword similarity [8, 27],
proximity distance [5], relevance ranking [4, 7, 8, 13, 18, 27]).
Further, previous techniques did not provide a seamless integration
with XQuery which permits querying both structure and text. More
importantly, these approaches did not develop a fully composable
model for full-text search the way AllMatches does for example.

Various ranking models have been proposed for XML in the IR
literature, including the vector space model [25] and probabilistic
models [23, 5]. These models provide a systematic way to compute
the relevance of a document to a query. Recently, some of these
models have been adapted to incorporate document structure into
account when ranking query answers. This has been the main focus
of the proposals submitted to INEX. In particular, XIRQL [13] and
XXL [27] extend the probabilistic model while JuruXML [7] and
ELIXIR [8] extend the vector space model.

Table 1 classifies existing XML full-text search proposals ac-
cording to available search primitives and scoring techniques. Many
IR engines for XML extend existing XML query engines as in the
second column. We can see in this table that GALATEX fills a gap
in the space of expressiveness of query languages for XML. Some
of these languages incorporate explicit or implicit textual and con-
text (element names) similarity operators used in the ranking mech-
anism. Most of them have decided to include limited XPath nav-
igation in the input query and allow SQL-like queries (ELIXIR,
XXL, XIRQL). Other languages have considered a more simple
and intuitive query syntax by either specifying the query as an
XML fragment (JuruXML) or in a Google-like style through a list
of pairs: element name and keyword (XSearch). There are different
approaches on the granularity of query output. XXL and ELIXIR
are able to return document fragments. On the contrary, XIRQL
and JuruXML focus more on relevance-oriented search and let the
engine decide what nodes to return.

In this paper, we discussed the implementation of the XQuery
Full-Text language [30], an extension of XQuery language [28] that
provides fully composable full-text search primitives. The TeX-
Query language [1] is the main precursor of XQuery Full-Text [30].
We presented GALATEX the first conformant implementation of
XQuery Full-Text that is able to query XML documents both on
structure and text content. GALATEX uses XML and XQuery to
implement XQuery Full text, which permits implementation on top
of any existing XQuery engine. One interesting direction is to ex-
plore the use of an existing IR engine to implement some FTSelec-



IR engines XML query
engine

Search primitives Weighting on
query terms

Similarity operator Scoring

XQuery Full-Text [30]
(GALATEX)

XQuery phrase matching, Boolean connectives, order spec-
ifier, proximity distance, no. occurrences, match
options (stemming, regular expressions, stop words,
case sensitive)

yes implicit probabilistic model
or vector space
model

XIRQL [13] (HyREX) XQL phrase matching, Boolean connectives,
$sounds like$ operator

yes (query terms and
document terms)

textual and context probabilistic model

Flexible XML Search
[27] (XXL)

XML-QL phrase matching, limited Boolean connectives,
LIKE operator

no textual and context (simi-
larity join)

probabilistic model

ELIXIR [8] XML-QL phrase matching, limited Boolean connectives no textual (similarity join) vector space model
JuruXML [7] Juru phrase matching, limited Boolean connectives

(negation)
no implicit, textual and con-

text
vector space model

Table 1: Classification of existing IR engines for XML

tion and benefit from IR scoring techniques for relevance ranking.
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